Objective: Eliminate redundant states

- Reduce the number of states in the state table to the minimum.
 - Remove redundant states
 - Use don't cares effectively
- ✓ Reduction to the minimum number of states reduces
 - The number of F/Fs needed
 - Reduces the number of next states that has to be generated ⇒ Reduced logic.

 \checkmark A sequential circuit has one input X and one output Z.

- ✓ The circuit looks at the groups of four consecutive inputs and sets Z=1 if the input sequence 0101 or 1001 occurs.
- \checkmark The circuit returns to the reset state after four inputs.
- \checkmark Design the Mealy machine.

✓ When first setting up the state table, we will not be overly concerned with inclusion of extra states, and when the table is complete, we will eliminate any redundant states.

State table

✓	Set up a table for	Input Sequence	Present State	Next State $X = 0$ $X = 1$		Output X = 0 $X = 1$	
	all the possible	reset	А	B	С	0	0
	input combinations	0	В	D	E	0	0
		1	С	F	G	0	0
		00	D	Н	1	0	0
		01	E	J	K	0	0
		10	F	L	M	0	0
_	For the two	11	G	N	Р	0	0
		000	H	A	Α	0	0
	sequences when	001	1	A	A	0	0
	the last bit is a 1	010	J	A	A	0	0
	return to reset	011	ĸ	A	A	0	0
	with Z=1.	100	L	A	A	0	1
		101	М	A	A	1	0
		110	N	A	A	0	0
		111	Р	A	A	0	0

Descent

.

Note on state table generation

- When generated by looking at all combinations of inputs the state table is far from minimal.
- First step is to remove redundant states.
 - There are states that you cannot tell apart
 - Such as H and I both have A with Z=0 as output.
 - State H is equivalent to state I and state I can be removed from the table.
 - Examining table shows states J, K, N and P are also the same they can be deleted.

Input Sequence	Present State	Next S X = 0	tate $X = 1$	Out X = 0	put $X = 1$
reset	A	B	С	0	0
0	В	D	E	0	0
1	С	F	G	0	0
00	D	Н	1	0	0
01	E	J	ĸ	0	0
10	F	L	M	0	0
11	G	N	Р	0	0
000	н	A	Α	0	0
001	1	A	A	0	0
010	J	A	A	0	0
011	K	A	A	0	0
100	L	A	Α	0	1
101	м	A	A	1	0
110	N	A	A	0	0
111	P	A	A	0	0

The result

✓ Reduced state table and graph

Input Sequence	Present State	Next S X = 0	tate X – 1	Pres Out X - 0	ent put X = 1
reset	A	B	с	0	0
0	B	D	D	0	0
1	с	F	D	0	0
00	D	н	н	0	0
10	F	L	M	0	0
000	н	A	Α	0	0
100	L	A	A	0	1
101	м	A	Α	1	0

✓ Original - 15 states - reduced 8 states

2012 - Joanne DeGroat, ECE, OSU

 ✓ Design a binary checker that has in input a sequence of BCD numbers and for every four bits (LSB order) has output 0 if the number is 0≤N≤9 and 1 if 10≤N≤15

 ✓ Design a binary checker that has in input a sequence of BCD numbers and for every four bits (LSB order) has output 0 if the number is 0≤N≤9 and 1 if 10≤N≤15

				Present			
Input	Present	Next S	state	Out	put		
Sequence	State	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1		
reset	А	В	С	0	0		
0	В	D	Е	0	0		
1	С	F	G	0	0		
00	D	Н	1	0	0		
01	Е	J	K	0	0		
10	F	L	М	0	0		
11	G	N	Р	0	0		
-000-	Н	A	А	0	0		
	1	A	A	0	1		
010	<u> </u>	A	A	0	1		
011	K	A	A	0	1		
100			<u>^</u>	Ő			
100			7	0	0		
101	N/	A	A	0	1		
110	N	A	A	0	1		
111	P	<u> </u>	<u> </u>	0	1		
		1		1			

011 111

	Input	Present	Next S	itate	Present Output		
	Sequence	State	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	
0	reset	А	В	С	0	0	
0	0	- B	D	Е	0	0	
1		с	F	G	0	0	
0		– D	Н	1	0	0	
2		Ε	1	1	0	0	
1		F	H		0	0	
3		G	1	1	0	0	
0,1	000 100	Н	A	А	0	0	
2,3,4,5,6,7	001 101	1	Α	А	0	1	
	010 110		-		-		

{D,F}, {E,G}, {B,C}
State table

State diagram

Implication Tables

- ✓ A procedure for finding all the equivalent states in a state table.
- Use an implication table a chart that has a square for each pair of states.

12

Step 1

- Use a X in the square to eliminate output incompatible states.
- \checkmark 1st output of a differes from c, e, f, and h

✓ Continue to remove output incompatible states

Present	Next St	ate	Present	
State	<i>X</i> = 0	1	Output	d
а	d	С	0	
b	f	h	0	e X
с	e	d	1	
d	a	е	0	
е	с	а	1	r Y
f	f	b	1	g
g	b	h	0	
h	с	g	1	

Now what?

✓ Implied pair are now entered into each non X square.
 ✓ Here a=b iff d=f and c=h

Present	Next St	ate	Present
State	<i>X</i> = 0	1	Output
а	d	с	0
b	f	h	0
с	e	d	1
d	а	е	0
е	с	а	1
f	f	b	1
g	b	h	0
h	С	g	1

Self redundant pairs

Self redundant pairs are removed, i.e., in square a-d it contains a-d.

Next pass

- \checkmark X all squares with implied pairs that are not compatible.
- \checkmark Such as in a-b have d-f which has an X in it.
- \checkmark Run through the chart until no further X's are found.

Final step

Note that a-d is not X and is equivalent if c=e, and the same for is c-e: is not X and is equivalent if a=d. We can conclude that a=d., i.e. and c=e.

✓ Removing equivalent states.

Present	Next St	ate	Present				
State	<i>X</i> = 0	1	Output	Present	Next St	ate	Present
а	d	С	0	State	<i>X</i> = 0	1	Output
b	f	h	0	а	а	с	0
С	e	d	1	b	f	h	0
d	a	е	0	с	с	а	1
е	с	а	1	f	f	b	1
f	f	b	1	a	b	h	0
g	b	h	0	h	C	a	1
h	С	g	1			9	

19

- Construct a chart with a square for each pair of states.
- ✓ Compare each pair of rows in the state table. X a square if the outputs are different. If the output is the same enter the implied pairs. Remove redundant pairs. If the implied pair is the same place a check mark as i≡j.
- ✓ Go through the implied pairs and X the square when an implied pair is incompatible.
- \checkmark Repeat until no more Xs are added.
- \checkmark For any remaining squares not Xed, i=j.

Another example

✓ Consider the state diagram:

	NEXT	STATE	OUTPUT
Present State	X=0	X=1	X=0 X=1
SO	S1	S4	0 0
S 1	S1	S2	0 0
S2	S3	S4	1 0
S3	S5	S2	0 0
S4	S3	S4	0 0
S5	S1	S2	0 1

Set up Implication Chart

Remove output incompatible states
and indicate implied pairs

·	NEX	T STATE	ГРИТ	
Present State	X=0	X=1	X=0	X=1
SO	S1	S4	0	0
S1	S1	S2	0	0
S2	S3	S4	1	0
S3	S5	S2	0	0
S4	S3	S4	0	0
<u>S5</u>	S1	S2	0	1

 In this case the state table is minimal as no state reduction can be done.

Implication Table (another example)

Present	Next	State	Ou	tput	Ь	del					
State	X=0	X=1	X=0	X=1				ı			
а	d	Ь	0	0	с	×	×				
b	е	а	0	0		<u> </u>			1		
с	g	f	0	1	d	×	×	×			
d	а	d	1	0					,]	
е	а	d	1	0	e	×	×	×			
f	с	Ь	0	0	f	c.dX	c,ex	×	×	×	
g	а	е	1	0	,	c, u ^	a, b	^	^		
					g	×	×	×	d , e √	d , e √	×
						a	b	с	d	е	f

✓ Its clear that (e,d) are equivalent. And this leads (a,b) and (e,g) to be equivalent too.

 \checkmark Finally we have [(a,b) , c , (e,d,g) , f] so four states.

Implication Table

Present	Next	State	Ou	tput	Ь	d , e √					
State	X=0	X=1	X=0	X=1	с	x	×				
а	d	b	0	0					1		
b	е	а	0	0	d	X	×	Х			
С	g	f	0	1	е	×	×	x	√ √		
d	а	d	1	0			C. e X				1
е	а	d	1	0	f	<i>c</i> , <i>d</i> X	a, b	×	×	×	
f	с	b	0	0	g	×	×	×	d,e√	d,e√	,
g	а	е	1	0				с	d	e	f

Present	Next State		Output	
State	X=0	X=1	X=0	X=1
a	d	а	0	0
С	d	f	0	1
d	а	d	1	0
f	С	а	0	0